将军饮马问题(将军饮马问题原理)
用户投稿 2023-04-16 教育
1、将军饮(yìn)马的科学计算依据:首先,介绍一下对称点的概念。已知一条直线L和直线外一点A,求A点关于L的对称点A`我们用的方法是A点向L引垂线,垂足为O,延长AO至A`,使OA=OA,则A`点即为所求。
2、其次,我们介绍一下将军饮马问题。据说,在古希腊有一位聪明过人的学者,名叫海伦。有一天,一位将军向他请教了一个问题:从A地出发到河边饮马,然后再B地,走什么样的路线最短?如何确定饮马的地点?提起路线最短的问题,大家知道:连结两点之间所有线中,最短的是线段。这个题中马走的是一条折线。这又该怎么办呢?海伦的方法是这样的:设L为河。作AO垂直交L于O点,延长AO至A,使AO=AO,连结AB交L于C点,则C 点即为所求的点。连结AC。(AC+CB)为最短路程。这是因为,A点是A点关于L 的对称点,显然,AC=AC。因为AB是一条线段,所以AC+CB=AC+CB=AB也就是最短。少年朋友们喜欢打台球吧,实际上打台球无时无刻都需要应用海伦的妙法。
3、下面我们看一个有关打台球的实例。若在矩形的球台上,有两个球在M和N的位置上。假如从M打出球,先触及DC边K点,弹出后又触到CB边E点,从CB边再反射出来。问用怎样的打法,才能使这个球反射后正好撞上在N 点放置的球?具体做法是: 先作M关于DC的对称点MLJLK,再作LKJ;L关于BC 的对称点LKJ那么MKJN和BC 的交点为E,DKL;S和CD 交于K,E、K就是球和各边的撞击点。按MK遮掩的践线打球,一定会使球M从BC边弹出后撞上球N。
声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 FB8260@QQ.COM 一经查实,立刻删除。
发表评论